N92-25464

Distributed Expert Systems for

Ground and Space Applications]L/ / | /

By:

Brian Buckley, Interface & Control S)rfstéms

-
e T

Louis Wheatcraft, Barrios Technology, Inc. B

Abstract
The workstation, minicomputer, and
microcomputer marketplaces have been

revolutionized in the past decade by systems that
are both open and distributed. As a leader in this
revolution, the Naval Research Laboratory’s
(NRL) Naval Center for Space Technology
(NCST), has been employing reusable software
components to build a series of test beds, test and
checkout systems for satellite assembly line
operations, and distributed control of satellite
tracking stations. The Navy has taken this one
step further by unifying ground and space
operations with the development of the Spacecraft
Command Language (SCL).

SCL is a hybrid software environment borrowing
from expert system technology, fifth generation
language development, and multitasking
operating system environments. SCL was
developed by the Navy to be the controlling
software for their Advanced Systems Controller
(ASC). The ASC is a MIL-STD-1750A based
Telemetry, Tracking, and Control (TT&C)
controller for a new generation of Navy
spacecraft having the capability of autonomous
operation for up to 180 days.

Today’s spacecraft are becoming increasingly
more complex, with added sensors, higher data
rates, and more capable standalone and
distributed processors. The SCL system allows
on-board processing of data, which has
traditionally been considered to be in the realm of
the ground segment. The distribution of
processing to the space segment allows the
spacecraft controller to analyze data points on-
board and make decisions based on knowledge
stored in the SCL scripts and rules.

In addition, the spacecraft bus and payload
systems are commonly developed independently,

PRECEDING PAGE BLANK NOT FILMED

59

- — 7
))"'?\ P
Eelauie

each having their own processors/controllers.
Using a common distributed control language
results in significant savings in total software
development. The space-based SCL system can
support distributed environments using a
hierarchical scheme allowing subsystem
controllers to communicate with a central
controller.

A distributed approach is also used with the
ground segment. Data points downlinked from
the spacecraft are routed to workstations that
analyze and view spacecraft and artificial
telemetry points in real time. The workstation’s
knowledge base is used to analyze the telemetry
and adjust the spacecraft’s high level tasking to
maintain the mission profile.

To unify the space and ground segments, the
NCST has chosen the SCL system as the standard
for use on-board the spacecraft as well as in the
ground stations. The SCL system will run on a
central ground station computer as well as on
individual workstations used for subsystem
monitoring and control. The SCL Real-Time
Executive (RTE) on-board the spacecraft will be
monitoring health and welfare, processing
telemetry, scheduling mission tasking, and
managing payload configuration changes.

Connectivity between multiple SCL nodes is not
limited to exchanges of database items. A
workstation can directly connect to any remote
version of the SCL RTE. This allows direct
control, interactive commanding, and real-time
query of the remote SCL RTEs. This direct
connect capability includes the version of the
SCL RTE on-board the spacecraft.

This paper presents the SCL concept of the
unification of ground and space operations using
a distributed approach, describes the SCL system,
offers examples of potential uses for the system,

INTENTICAGL LY &y i

SCL RTE
on Satellite

SCL
Workstation

SCL
Workstation

P

SCL RTE
on Satellite

SCL on

] Vs
:b “\\ ‘

Ground and Space Network using SCL

and details current distributed applications of
SCL.

Introduction

The Naval Center for Space Technology (NCST)
is in the process of developing the Advanced
Systems Controller (ASC), which is a major
upgrade to its current microprocessor based
spacecraft controllers. The ASC hardware is
based around the Honeywell GVSC MIL-STD-
1750A processor and has been designed to be
general purpose to allow tailoring of the system to
meet the requirements of other spacecraft
programs. The ASC software is based on the
Spacecraft Command Language (SCL) Real-Time
Executive (RTE). SCL is a hybrid system that
employs a rule based event driven expert system
as well as a procedural scripting capability.

The SCL development environment consists of a
ground based windowed system used to develop
SCL scripts and rules. The integrated

environment consists of an editor, a compiler,
decompiler, tracing subsystem, explanation
subsystem, and the RTE. The SCL RTE was
designed to be portable and run in a real-time
embedded systems environment. The SCL RTE
represents the majority of the code necessary to
implement an embedded spacecraft controller.
The NCST saw the need for the integration of
ground and space operations with a common
control system using a single control language.
By using SCL in a distributed environment, the
command language for ground and space
segments share a common syntax. The SCL
grammar is based on fifth generation languages
and is very english-like, allowing non-
programmers to write the scripts and rules that
constitute the knowledge base. Because the
ground-based SCL environment uses the same
RTE as the spaceborne controller, scripts and
rules can be developed and debugged on the
ground-based RTE before requiring the spacecraft
hardware for final checkout.

The NCST has incorporated a control system in
its ground stations for the past decade. This
control system has proliferated to integration and
test environments, and to many of the supporting
ground stations around the world. The SCL
system has been integrated with this control
system to provide additional, or “value-added”
capabilities to the existing systems. Besides the
goal of early deployment and checkout of the
SCL software, the NCST felt that the existing
ground stations could benefit from the expert
systems capabilities provided by the SCL system.

The existing NCST satellites are well
characterized and are managed by several
software components and Orbital Operations
Handbooks (OOH), which define configurations,
constraints, and contingency plans. This
knowledge can easily be translated into SCL’s
scripting language. The resulting knowledge base
consists of SCL scripts, rules, and functions. The
knowledge base is used in real time to monitor
and detect changes in the vehicle configuration,
maintain the configuration, move efficiently from
one configuration to another, monitor system
health, and perform command verification. At a
ground station, copies of the SCL system are used
on workstations to analyze telemetry and drive
third party graphics products. The SCL
workstations are able to advise an operator of
anomalous conditions and suggest corrective
measures, compare the current configuration
against the desired mission tasking profile, and
provide a capability to autonomously maintain
vehicle configuration.

A New Way of Doing Business

In the past, only a ground-based command and
telemetry database needed to be managed. With
the advent of the ASC concept, the on-orbit SCL
database must also be considered. The field sites
throughout the world must also have knowledge
of the database items that are on board, as well as
the scripts and rules that are loaded on the ASC.
All ground stations must have knowledge of the
orbiting satellite’s database.

The current generation of spacecraft has a control
system used for ground operations, an embedded
control system for the spacecraft controller, and
hard-coded algorithms for specialized hardware.
Rather than use several different sets of software,
the NCST approach is to use the same SCL

61

software for spacecraft control functions as well
as for ground station control. The SCL system is
portable and has been designed to be used in
embedded systems as well as workstations and
minicomputers. This approach allows a common
SCL grammar to be used for the ground station,
the spacecraft controller, and payload controllers.

A major departure from the past and present
spacecraft control systems, is the concept of using
an existing, validated software “shell” for control
system development. In the past, it was felt that
each new spacecraft system needed a unique on-
board software controller. Thus a special team of
specialized programmers would develop a new
control system from scratch. This proved to be a
high risk as well as a very expensive approach
both in terms of cost and schedule. With the SCL
concept, the only unique software is the low level
hardware interface code, the database, and the
knowledge base. This approach has several
advantages:

« The development cycle can be shortened;
much of the code is “off the shelf”.

+ Risk is reduced. The SCL system has been
proven both on ground and on space
processors.

« The knowledge of a system is embedded in the
controller.

» The learning curve for ground station
operations is reduced since the knowledge is
captured on the system.

« Consistent operations. Tasking of the vehicle
is performed the same for both the ground and
space segment.

The scripting contained in the knowledge base is
written using a high level language that can be
easily learned and understood by the subsystem
engineers, thus not requiring a team of specialized
programmers.

Mission tasking has traditionally been based on a
time-line. At a given point in time the spacecraft
is commanded to perform a function.
Commanding can be carried out via stored
commands, and by interactive commanding from
the ground station. The time-line approach has
proven to be cumbersome and difficult to
administer. Previously, commanding was done
“blind”; no database was available on the
spacecraft for interrogation. With the availability

Script/Rule Source

Interactive Commands

ScriRul :
&2 Database B

Actuator Commands

Development
Environment

Operator Directive

Status and Responses

Real-Time
Telemetry Values

DB Record Defi

SCL System Dataflow

of SCL’s scripting capabilities and flight GPS
receivers and other equivalent devices, an on-
board expert system that is performing real-time
monitoring of the current spacecraft position can
allow field of view tasking to be implemented.
The spacecraft can collect data when an area of
interest is in the field of view, and it can dump
stored data when a field site is within its field of
view. This approach can greatly simplify the
mission tasking definition and the reduce the need
for as many men in the loop.

The NCST envisioned using the SCL system on-
board the spacecraft to share the testing burden,
since it would be able to detect and isolate faults
and report them to the ground. Time saved
during the integration and test phase of the
program can result in significant monetary
savings. The capability to do self-diagnosis is
desirable since a low earth orbiting spacecraft
(LEOS) is in view of a ground station for only a
small percentage of its orbit.

SCL System Architecture

The SCL system consists of five major
components:

» The database describes digital and analog
objects that represent spacecraft sensors and
actuators. The latest data sample for each item
is stored in the database. The database also
contains derived items that are artificial
telemetry items whose values are derived from
physical sensors. Examples of derived items
could be: average temperature, power based on
current and voltage monitors, subsystem status
variables, etc. Data structures required to
support the Inference Engine are also stored in
the database. These items include command
actuators for commanding the spacecraft
systems.

+ The development environment is a window
based application that includes an integrated
editor, the SCL compiler, decompiler, cross-
reference system, explanation subsystem, and
filing system. The development environment
is also used as a front-end to control the SCL
RTE. A command window is used to provide

a command-line interface to the Real-Time
Executive. Extensive use of pull down menus
and dialogs are used to control the system.

« The RTE is the portable multi-tasking
command interpreter and inference engine.
This segment represents the core of the flight
software. This portion of the software is
available in both C and Ada to allow ease of
porting to a specific hardware platform
(ground or space).

« The Telemetry Reduction program is
responsible for filtering acquired data, storing
significant changes in the database, and
presenting the changing data to the Inference
Engine.

+ The project is the collection of SCL scripts and
rules that make up the knowledge base. On the
ground based systems, the project contains an
integrated filing system to manage the
knowledge base. In the space environment, the
binary knowledge base is uploaded to the
spacecraft and stored in memory.

Depending on the needs of the user, all
components of SCL can be run on a single
system, or may be distributed among systems.
The development environment can be used to
directly connect to a local or remote version of
the SCL RTE. This direct connect capability is
also supported for the space segment to allow
interactive commanding and query of the system.

Fielding the System

Due to the power and the advantages provided by
SCL, the NCST decided to put the SCL system
into the field immediately for several reasons:

« Risk Reduction - prove the system is viable
through a series of proof of concept efforts.

» Capture knowledge of key personnel to allow
the system to aid integration and test efforts.

« Allow parallel development of knowledge
bases on workstations.

« Develop a concept for adaptive mission
tasking, and field of view commanding.

+ Allow development of simulations for Air
Force and Navy Projects.

+ Integrate SCL with existing systems to allow
value-added features.

The SCL system was put through its paces early
in its development cycle in a series of proof of
concept efforts. The Lab Test Bed proof of
concept used the SCL RTE on a UNIX platform
to control a prototype satellite. To demonstrate
the enhanced capabilities of SCL, the following
demonstrations were performed:

« SCL_Satelli nfiguration an
reconfiguration. The goal of this
demonstration was to show SCL is capable of:

- Transitioning from one control language to
another. This was demonstrated by
translating existing control system
command procedures into SCL scripts.

- Commanding the spacecraft and receiving
telemetry responses.

- Detecting that the spacecraft is not in a
desired configuration and notifying the
operator.

- Automatically reconfiguring the spacecraft
to a safe state in event of an error.

+ SCL__Commanding. The goal of this

demonstration was to show several SCL
capabilities:

- Simple commanding and verification by
monitoring telemetry points to verify that
the command was successful.

- Mission constraint checking by verifying
telemetry prior to a command being issued
to prohibit a potentially damaging command
from being sent.

- Abstract commanding by using SCL’s high
level commanding capabilities. Scripts are
used to check telemetry and manage
primary and redundant sides of boxes, and
allow a default side to be active.

« Fault Tolerant Configuration. The goal of this
demonstration was to show the SCL capability
to react in real time to telemetry changes and
implement an alternate course of action if
conditions warrant, This demonstration used
redundant sides when the primary side did not
respond.

constraint HOT_SWITCH
subsystem TRANSMITTER
category SWITCHING
priority 15

activation YES

if
(BIU_CROSS or BIU_NORM)
and
XMIT_POWER = ON
then
reject
execute fault_log with constraint_err
end if

end HOT_SWITCH

SCL Constraint Example

reporting of problems. SCL enhances testing
by providing a flexible and re-usable means of
implementing on-board testing. At the
subsystem level, scripts and rules can be
written to provide a test environment for a
specific subsystem. SCL can send commands
to the unit, and react to the telemetry responses
from the unit. This would provide a common
test method for many layers of the system,
allowing consistent testing throughout the
phases of system integration. At this level,
SCL supports command and telemetry
verification for each box.

Field of View Operation. The spacecraft
position coordinates are telemetry database
items and may have rules associated with
them. When a significant change in the
position data occurs, the rules associated with
them are executed. The rate that the position is
updated is determined by the desired ground
track accuracy. The field of view can be
calculated from the position coordinates and
compared to the area of interest. If the area of
interest is within the field of view, the rule may
execute scripts or sequences of commands to
change the spacecraft configuration.

Mission Tasking. The goal of this
demonstration was to highlight three tasking
aspects of SCL. First, SCL is required, at a
minimum, to reproduce the current capabilities
to schedule and activate various configura-
tions. Second, SCL is capable of a variety of
common cyclic functions that can be scheduled
within the SCL kernel. Third, SCL is capable
of multitasking. This multitasking capability
will reduce the time, effort, and complexity of
resolving the varied resource needs between
program entities. By supporting multitasking,
SCL can satisfy requirements from many
different sources.

Self-Testing. The NCST has designed the
ASC with a goal of improving testability. By
using the ASC processor as an asset for testing,
parallel testing can be accomplished. Having
an intelligent controller allows the system to
perform self-diagnosis, trouble shooting and

const fore 1

script Maneuvert

-- This script prepares the Reaction Control
-- Subsystem for a thruster firing and calls a
-- subroutine script to perform the actual

-- firing. It accepts two parameters: one

-- indicating which thruster to use and

-- another specifying the duration of the firing

-- define a constant for the
-- forward thruster
thruster, duration

-- command to enable thrusting
set RCS_ENABLE to ON

-- allow propellant flow

set TANK_ISO_VALVE to OPEN

if
thruster = fore
then
-- call Fore thruster subroutine

execute ManvFore with duration

else
-- call Aft thruster subroutine
execute ManvAft with duration

end if

-- command to disable thrusting
set RCS_ENABLE to OFF

-- command to isolate tank

set TANK_ISO_VALVE to Closed

end Maneuver1

SCL Script Example - Mission Tasking

« Simulation. Frequently, in the production of
the spacecraft, there are subsystem components
that have not been integrated or are missing
due to troubleshooting or modification. In
their absence, test procedures have to be
modified or must be postponed until the
component is available. Having a simulator
for a missing component is desirable so test
procedures can be run without modification
and testing can proceed without the complete
system in place. In the event a particular box
is absent from the spacecraft, its presence
could be simulated by the SCL inference
engine, either operating in its embedded form
on-board the spacecraft, or in its ground
system form operating on the ground station
processor. To simulate a missing component, a
knowledge base must be developed to respond
to commands defined for the component.
When a command is sent to the component, the
associated rule is executed and a corresponding
telemetry response is generated.

rule BATT3_TEMP
subsystem EPS
category BATT3
priority 15
activation YES

if

BATT3IT > 50
then

set alarmlevel of BATT3IT to RED
execute battsafing with 3, priority = 30
end it
end BATT3_TEMP

SCL Rule Example

Further Proving of the System

In another proof of concept, the NCST wanted to
test the expert system technology in a “real-
world” scenario. This proof of concept required
that the SCL system be compared to a
commercial off the shelf (COTS) expert system.
Both SCL and the COTS system were required to

be capable of being used in embedded systems
(i.e., blown in PROM). The expert systems were
to be used to implement the flight algorithms for
NRL’s upper stage used for orbital insertion of
satellites. The upper stage is spin stabilized until
it reaches the insertion orbit. Once in the desired
orbit, the upper stage is spun down and stabilized
using momentum wheels and reaction control
thrusters. The upper stage then jettisons the
spacecraft allowing it to move into its parking
orbit.

All aspects of the orbital transfer maneuver are
controlled by the Attitude Control Electronics
(ACE). The ACE subsystem is semi-autonomous
and can issue thruster commands to maintain the
desired attitude. The ACE control loops were
developed in the flight processor’s native
assembly language. The development of the
algorithms required years of design, testing and
elaborate simulation. Within 3 months, two
prototypes were generated using SCL and the
COTS expert system. The two prototypes were
exercised using the same flight qualification test
used for acceptance testing of the original ACE
flight software.

The results of this effort proved that the COTS
expert system was NOT able to keep pace with
the flight control loops, resulting in additional
thruster burns to stabilize the spacecraft. The
knowledge base for the COTS expert system was
re-designed, but was still unable to keep up with
the control loops. The SCL system however,
performed the ACE algorithms as efficiently as
the flight software.

Based upon the successful demonstrations of the
SCL system, the NCST baselined the SCL
software as the control system for the Advanced
Satellite Controller. The system has also been
chosen as the control system for two NASA
projects, one of which will launch in September
of 1993.

Satellite Simulations

In the summer of 1990, the NCST was chosen to
provide spacecraft simulations for the Space
Defense Initiative Office (SDIO) Standard
Mobile Segment program. The NCST chose to
use the SCL system to provide command
response capabilities and electrical and thermal
modeling for the FLEETSATCOM and GPS

satellites. An SCL rulebase was developed to
decode binary commands and insert an
appropriate response in the telemetry bit stream.
Telemetry from this bit stream was distributed
over Ethernet to Air Force contractor
workstations. The SCL system was integrated
with the NCST’s TT&C system to allow real-time
simulation of command responses. The electrical
and thermal models were also developed as part
of the SCL knowledge base. These models
provided a detailed emulation of the spacecraft in
real-time or up to 600 times real-time.

The SCL simulations were developed on
workstations and delivered on the host computer
as a stand-alone entity. The system was activated
from the TT&C system, and runs with little or no
operator intervention. The only intervention
required is when an operator wishes to generate
anomalies in a scenario. These simulations have
been delivered to Air Force contractors, to the
National Test Bed, and to the NAVSOC facility
at Pt. Mugu, California. The NAVSOC personnel
currently use the simulators for FLEETSATCOM
training. In the near future, the SCL software will
be embedded in a high-fidelity hardware
simulation for a NCST program.

Integration with Existing Systems

Currently, the SCL system is completing its
integration with the NCST’s ground station
software where it will become part of a client-
server model. The SCL system will reside on
several workstations as well as the ground
station’s central computer. All communications
will be through a packetized message passing
protocol over Ethernet. The ground station
TT&C software is responsible for telemetry
decommutation and distribution. The SCL
workstations will monitor appropriate telemetry
to generate operator advisories and drive graphics
interfaces, which are used to indicate the
spacecraft configuration, health, and welfare.

The NCST tracking stations are taking advantage
of the distributed aspects of SCL using a network
of minicomputers and workstations. Once the
NCST’s ASC is launched, the full potential of
SCL can be exploited. In addition to the ground-
based network, the spaceborne ASC platforms
will be capable of communicating with each
other. Ground stations will be able to perform the
central site load to one ASC. The ASC that is

loaded will be capable of forwarding the
applicable script, rule, and database loads to the
other ASC’s. Since the ASC’s can be in constant
communication with each other, the mission
tasking load can be balanced among the cluster of
ASC’s. This concept of adaptive tasking will be
managed by the on-board SCL expert systems.
Each SCL knowledge base will know the
configuration of the on-board ASC, and can query
the other ASC’s to obtain their current
configuration and tasking profile. Having this
capability will create a network of ground and
spaceborne SCL platforms. With the ability to
upload databases and knowledge bases, the
possibilities for this network are tremendous.

Reusable Controllers

Recently, SCL was chosen for a
commercialization of space contract funded by
NASA Goddard Space Flight Center. The
Autonomous Rendezvous and Docking (ARD)
satellites will use SCL to control docking and
fluid transfer experiments. The ARD satellites
will use off-the-shelf spacecraft computers based
on the 80186 chipset. The ARD satellites will be
low earth orbit satellites. The ground stations
will use SCL to monitor telemetry and send
commands. The two satellites will both be
controlled by an embedded version of SCL and
will communicate with each other during the
docking procedure through RF modems. When
the satellites are within a kilometer of each other,
one satellite will act as master, and the other as
slave. The SCL knowledge base on one platform
will be sending commands to control the
maneuvers of the other.

The same off-the-self spacecraft controller will be
used for a material processing experiment to be
launched as a NASA Get Away Special (GAS)
on-board the Space Shuttle. This captive
experiment will use SCL to control an oven and a
robot that will be used to place material samples
in an oven to.test the effects of annealing in a
weightless environment.

Lessons Learned

Development of a distributed expert system for
ground and space did not come without its share
of technical and psychological obstacles. The

following paragraphs give an overview of some
of our challenges.

Portability: The SCL system was originally
developed on a Macintosh II platform. The
Macintosh proved to be a highly productive
environment because of its integrated toolkit for
windowing, the operating system, and the filing
system. The software development tools
available on the Macintosh were the most
affordable and most sophisticated at the time. We
made great strides in the development of the
systems, but we were faced with the chore of
porting the system to other platforms. The NCST
tracking station uses the Digital Equipment
Corporation (DEC) VAX family of computers
and workstations running the VMS operating
system. The SCL code was originally written in
C, and we had to convert the real-time engine and
database loader to ANSI compatible C. We also
needed to support UNIX platforms and IBM PC
platforms. This required adding conditional
compilation statements for some of the include
files since paths are different.

To keep the core software identical on all
platforms, the operating system specifics and the
1/0 have been abstracted to a very small number
of routines, which are replaced on each system.
These routines interface directly to the host
operating system to schedule execution, map
memory sections, and obtain systems time. The
low level I/O and network [/O is also handled in
this group of routines. This abstraction of 1/O has
allowed the system to be easily ported to multiple
hardware platforms, operating systems, and real-
time executives for embedded systems.

Another major obstacle was communication
between local and remote versions of SCL on a
non-homogeneous network. Different machines
were either big-endian or little-endian (high byte
then low byte in memory, or vice-versa); they
also use different floating point formats. The
low-level 1/O modules were modified to
determine the “‘sex” of the local and remote SCL
systems and perform any data transformations
necessary. The network I/O has been sufficiently
abstracted to allow communication via TCP/IP
and DECnet protocols over Ethernet, Appletalk,
serial communications such as RS-232, and
custom protocols.

We felt it was prudent to allow the spaceborne,
embedded version of SCL to perform native
access to all data structures including the

67

database, and the knowledge base. To allow the
embedded SCL to have native access, the ground
based development environment had to support a
cross-compilation of all data destined for a
remote version of SCL. By setting a software
switch, the data streams, and files produced, are
formatted in the target processor’s native data
structures. The development environment is also
capable of decompiling the data streams from the
target platform.

Necessity vs. “Feature-itis”: As the system
evolved, new features were added as needs and
requirements dictated. At one point we found
ourselves adding features because we thought it
would make the system “slick”. As we found out,
new features and new code created side effects
that were not discovered without extensive
testing. We also found that many of the “slick”™
features were difficult to duplicate on other
platforms, since they did not have an integrated
toolkit like the Macintosh. We were striving (o
maintain a common look and feel for the product
across platforms. Because of the porting of the
code to multiple platforms, the system was
baselined (frozen) and only changed for
maintenance and bug fixes.

The SCL proofs-of-concept resulted in another
company providing an objective analysis of our
product. Our system was compared with
commercial products to test functionality as well
as real-time performance. As a result of the
comparisons, we added several extensions to the
grammar, and an additional user-selectable,
inferencing strategy. Other behavioral quirks
were also corrected. We did not however, add
more object oriented features due to the real-time
considerations. The SCL system is designed for
real-time embedded environments and pre-
allocates all data structures prior to startup. The
SCL RTE does not perform any dynamic memory
allocation due to memory fragmentation issues.
Traversing the data structures necessary to
implement additional object-oriented features
would degrade the real-time performance and
increase the memory requirements for the system.

Information Management: For past programs,
the spacecraft controller used a low-level
command-language and did not support an on-
orbit database. The ground station and test
systems were the users of a database. With the
introduction of the’ASC (with SCL on-board), the
ground sites as well as the spacecraft must

contain copies of the database. Additionally, a
core set of scripts and rules must also be
managed. In the past, it has been difficult to
ensure that all mission sites contain a database
which describes the same command and telemetry
points as the central site. The prime contractor is
now responsible for delivering and configuration
managing databases for each site and platform.
Distribution of the databases are from a master
database at a central site. All other sites'
databases are derived as a subset of the central
site’s database. The spacecraft data points are the
same from site to site, but the databases at each
site can be extended to include ground specific
data points.

Currently the SCL development environment
compiles scripts, rules and database records and
assigns ID’s to each. Scripts, rules, and database
records are referenced by these ID’s. To keep all
sites synchronized, a given 1D must correspond to
the same script, rule or data point at each site.
The situation is further complicated when the user
references data points or scripts on another
platform or network node. Several options are
available to guarantee that an ID is unique among
all nodes and platforms in the network. The
strongest contender as a solution is to use a hash
algorithm to define the node and
script/rule/database item combination. This
scheme results in a 64-bit ID for each object and
doubles the current size of the ID in the SCL
intermediate code. In addition to the extra data
word requirement, several table lookups are
required to efficiently look up the address for the
data structures.

Another area of concern was how to distribute the
calculation of the artificial data points (derived
items). It was felt that the prudent approach was
to divide the derived item calculations between
ground and space. Rules are used to calculate
derived items and are defined on the appropriate
platform. Spaceborne derived items might be
used in calculations for attitude control, where
derived items would be used on the ground 1o
drive graphics displays. The ground derived
items are further distributed to workstations that
analyze telemetry for specific subsystems.

Windowing & Reusable Code: As prototypes
of the SCL system were ported to other platforms,
the amount of code was increasing rapidly. This
problem was complicated by the fact that the
windowing systems on each platform (Macintosh,

OSF/Motif, Microsoft Windows) behaved quite
differently from a programming viewpoint. We
estimated that a man-year would be required to
bring a programmer up to speed on each
windowing system to generate a production
quality application. We also saw that many
software functions were being replicated even
within the same programming team. It was at this
point we decided to port the SCL development
environment over to C++ to promote code
reusability and abstraction from the windowing
system specifics.

We saw four layers of class libraries that needed
to be defined. The foundation of the system is the
portable filing system layer and the database
management layer. The filing system layer
implements a class library modeled after the
Macintosh resource files. The filing system is
based upon a four character ASCII key that is
used as an index. Each key (or resource) can
contain variable length data structures identified
by a unique name and index. This filing system
is used to maintain a consistent interface across
all platforms.

The data management layer is based largely upon
the public domain National Institutes of Health
(NIH) class library. This class library manages
commonly used data structures: lists, sorted lists,
data blocks, strings, collections of objects, etc.
This layer is a simplified subset of the functions
contained in the NIH class library. Data
persistence is 1mplemented to allow data
structures to be maintained in memory once they
have been read from disk. This has significant
performance advantages since the disk is only
accessed again when the file is closed, or the
programmer explicitly requests that the data be
written back to disk.

Abstraction: The SCL system was envisioned
from its inception to be applicable to other types
of controllers and other satellite programs. To
accomplish this, the system had to abstract the
specifics of the application from the knowledge
engineer. The grammar for SCL is a hyper-
scripting language that supports object-oriented
features. The object-oriented approach allows the
Real-Time Executive to treat Actuators, Sensors,
and Derived Items essentially the same way. All
decisions as to how to perform the 1/O is deferred
to the lowest level interface routines. These
routines are the “glue” between the logical and
physical interfaces. This approach allows a few

hundred lines of code to perform any
transformation required by the hardware
interface. This approach allows identical scripts
to run both on workstations and the flight
pProcessor. Both implement the same
functionality, but one could communicate over
Ethernet, while the other communicated with a
TT&C bus, or an I/O card in the same chassis.

SCL
Scripts And Rules

Independent
Layer
Interface
Routines
Application
/ > Specific
Layers

SCL Software Architecture

Application

Abstraction is also the key to keeping the vast
majority of the SCL code portable. All operating
system specifics are isolated from the code in just
a few routines. These routines are replaced on the
target machine with calls to systems services
specific to that operating system.

Fear Of Artificial Intelligence/Expert Systems:
Perhaps the largest hurdle to overcome is an
inherent fear or apprehension of managers that
they do not want to lose control of their
spacecraft to a computer. They simply don’t
want to accept the perceived risk, and are more
comfortable with the old or existing methods. To
overcome some of the initial negative reactions,
we have had to avoid the terms artificial
intelligence and expert systems. Instead we use
the term “Smart Control System”. There is
probably a better term. The main points that must
be made are:

+ Existing methods of ground up development
are just re-inventing the wheel and are more
risky because of the use of “new” and
unproven code. They are also more costly

because of the time to develop a controller
from scratch and because of the increased
schedule time.

« Rules are already embedded (hard coded) into
existing software. But because they are coded
by specialized programmers, it is difficult for
the subsystem engineers to review and
understand how their systems are being
monitored and controlled.

« As stated previously, the SCL system
employes the concept of using an existing
validated software “shell” for control system
development. With the SCL concept, the
only unique software is the low level
hardware interface code, the database, and the
knowledge base. The scripting contained in
the knowledge base is written using a high
level language that can be easily learned and
understood by the subsystem engineers, thus
not requiring a team of specialized
programmers. The rules that exist in the
traditional controllers are now structured as
individual items that are evaluated by the
inference engine. This structure makes it easy
for the subsystem engineers to review and
understand the how their subsystem is being
monitored and controlled.

o The amount of control given to the SCL
system can vary depending on the needs and
the configuration of the system. SCL can be
used to duplicate an existing system’s
capabilities, perform data pre-processing, self-
test, or autonomous control. The amount of
control given to the system can be determined
by the project office.

Expert systems have been recognized as being
applicable to ground and space applications.
However, association with Artificial Intelligence
continues to project negative connotations for
some people; the relationship must often be
avoided.

Other Uses for SCL

The use of abstraction and object-oriented
techniques allows the SCL Real-Time Executive
to be applied in a variety of areas:

Spacecraft controllers: The RTE is available in
both C and Ada making it applicable to a wide
variety of processors.

Subsystems Controllers: The SCL system is
designed for distributed environments and as such
allows for a hierarchal bus structure for
subsystem controllers to report to a system
controller.

Centralized ground station computers: The
system can be used in conjunction with X-
Terminals to manage ground station resources
such as antennas, frame syncs, command
encoders, etc. The system can also be used for
scheduling ground station resources.

Workstations: The SCL system is ideally suited
for use on workstations to allow distributed
processing and parallel analysis. The system is
also useful for driving graphics and visualization
tools. Results from local workstations can be
reported back to a central computer, or commands
may be uplinked to change or correct the mission
profile. SCL has been demonstrated to be
capable of analyzing the spacecraft configuration
and providing advisories for operators and
spacecraft engineers.

Integration and Test: The SCL system is used
at Integration and Test (1&T) facilities to perform
automated command procedures. The procedures
developed at the I&T facility can then easily
migrate to the tracking facility. If SCL is also
used for the spacecraft, the scripts and rules can
also migrate to the spacecraft. The on-board
processing capabilities of SCL allow a spacecraft
to perform self-health diagnostics and report its
status to the ground.

Test Equipment: Quite often, mission unique
hardware must be developed for test equipment.
The equipment often requires a control system
and a language to allow it to be commanded to
perform its functions. SCL can easily be
embedded in the target hardware to provide a
standard interface for all phases of testing.

Simulation: SCL has been proven to be capable
of providing command response simulations as
well as detailed modeling of systems. The
simulations can be used to augment missing
subsystems during spacecraft integration as well
as provide a common platform for system training
of operators and other personnel.

Conclusions

The SCL system is quite feasible for use on
distributed systems for ground and space. The

70

SCL system also helps promote a standard
interface for the many facets of ground and space.
The system does introduce information
management problems that are overcome by a
disciplined approach to configuration
management. This disciplined approach must
also extend to the distribution of databases and
knowledge bases. The system is several years
into its development, has had numerous proofs-
of-concept, and is in use at several sites. The
SCL system provides a low-cost, low-risk
solution for many of today’s command and
control environments.

Acknowledgments

We would like to thank the following people for
their contributions to this paper: Dave
Schriftman, and Patrick Pinchera.

References:

1. Buckley, Brian and Wheatcraft, Louis:
Spacecraft Attitude Control using a Smart
Control System, SOAR Symposium, Houston
TX., July 1991

2. Buckley, Brian and Wheatcraft, Louis:
Spacecraft Command Language - A Smart
Control System, Interface and Control
Systems, Melbourne, Fl., Barrios Technology,
Houston, TX., March 1991

3. Van Gaasbeck, James: Technical Overview of
the Spacecraft Command Language Naval
Research Laboratory, Washington D.C., 1991

4. Interface and Control Systems: SCL User’s
Guide, Naval Research Laboratory,
Washington D.C., 1990

5. Buckley, Brian and Wheatcraft, Louis: Rapid
Prototyping of a Spacecraft Controller,
JAIPCC Symposium, Houston TX., March
1991

6. Buckley, Brian and Wheatcraft, Louis:
Spacecraft Simulations with a re-usable
Smart Control System, JAIPCC Symposium,
Houston TX., March 1991

